工作甘苦談文章

熱門社群 升學媒體人秘書HR百貨行銷醫護觀光餐旅
職務大辭典 » 職務中類表 » 系統規劃 » 資料庫管理人員 » 大數據科學家,所必備的五項技能
職務定義:
薪資平均範圍:
薪資職能報告
工作年資 1年以下 1~3年 3~5年 5~7年 7年以上
平均薪資 年資1年以下 : $32,165 年資1~3年 : $40,794 年資3~5年 : $44,336 年資5~7年 : $47,024 年資7年以上 : $50,343
  1. 設計整體數據庫的架構,數據庫系統的建立
  2. 制定數據庫備份和資料恢復的工作流程與相關規範
  3. 監督數據庫系統的安裝
  4. 對數據庫的空間進行分析,有效管理數據庫的運作
  5. 資料庫管理員平均月薪為人民幣2,776元
主題:

大數據科學家,所必備的五項技能

大數據科學家有多夯?讓我們從有史以來市值最高的科技公司蘋果看起。為搶大數據科學家,蘋果開出美金16萬到20萬(約合台幣400萬到600萬)的年薪,以及任何你想得到的好康福利:美味員工餐、健身中心、教育津貼甚至凍卵補助,但蘋果不是唯一一個需要數據科學家的公司,打開領英(LinkedIn),上頭至少有5萬3千個數據科學家的職缺,而這還只是美國的統計數字。

大數據行動廣告平台威朋是一家藉由分析行動裝置的數據,為客戶找到精準行銷目標的數據管理平台(DMP)與即時廣告競價(RTB)投放公司,業務橫跨台、日、中、港等地,數據分析為其業務核心,數據分析部門佔其人員大宗,威朋數據科學研發經理彭智楹與張嘉祜分別擁有多年數據分析經驗,現身說法分享數據科學家到底在做什麼以及如何成為數據科學家。

特質一:定義和釐清問題

談及好的數據科學家具備什麼條件,彭智楹認為可以分成兩種等級:一種是是別人幫你把問題定義好,然後你來解開,但更厲害的是你知道怎麼找問題,什麼問題才是重要的,自己發現問題。「你要定義最有前瞻性最重要的問題,結果不只正確還要顯著性,對各領域發展有貢獻,要有商業價值和技術進步的空間,兩者能兼備是最好的。」彭智楹說。張嘉祜也認為在分析數據時,定義問題的能力很重要,因為問題分成很多層面,數據科學家必須要看當下要解決什麼問題,再用那個指標去回答。因此數據科學家首要具備的條件就是:定義和釐清問題

特質二:想像力

不要以為數據科學家整天在電腦前面工作,只要一板一眼地分析數據就好,其實想像力也很重要。張嘉祜根據自己的工作經驗指出,有一定的創意才能幫助自己找到不一樣的觀點,學校會訓練你使用習慣的工具,但你應該要嘗試各種可能,如果沒有專業知識判斷,最後得到的結果就會跟大家差不多。

例如在威朋工作常會需要幫助客戶找到具有某種特徵的族群,這個時候若只靠經驗和專業是不夠的,還需要發揮一些想像力。「我們在描述一個人的行為傾向時是很多維度的東西去做整合,除了你對生活經驗的豐富度之外,你還要有創意去描述這種人具有什麼樣的行為特徵,我們再透過機器學習的輔助,幫助你快速收斂這些特徵背後隱含的意義是什麼,不然一般人就是我想到什麼樣的資訊我就勾一勾,這樣不夠。」張嘉祜說。

特質三:邏輯思考能力

數據科學家的工作時常需要建立假設然後去驗證它,並且建立模型,這個過程仰賴優秀的邏輯思考能力,否則追尋答案到一半可能不小心就會走到岔路。大學時期雙修物理和心理學的彭智楹認為,心理系的訓練幫助他可以更容易了解他人的動機和想法,也因此在分析數據時常有意想不到的收穫。

以數據科學家最討厭的機器人為例,這類的假數據抓不勝抓,又會影響到統計結果,令人不堪其擾,但彭智楹認為與其去思考機器人在哪裡,要怎麼抓,不如反向思考什麼樣的網頁需要機器人,機器人的數據從哪裡來,就像是偵探福爾摩斯一樣,「偵探怎麼找出犯人,他不是從犯案手法去看的,而是從動機。」

特質四:基礎數理與資訊工程能力

雖然彭智楹和張嘉祜都同意數據科學家不一定非得要是理工學院或電資學院出身的,但也都異口同聲地指出數據科學家還是必須具備基礎數理與資訊工程能力。

張嘉祜說,你也許可以用Excel去處理數據,但如果想要加快資料處理速度的話,程式能力依然是必須的。彭智楹認為不能害怕數字很重要,必須要培養對數字的敏銳度,例如他在念博士時就會用眼睛觀察數列是否有周期性的變化,從中訓練自己對數字的敏銳度,他甚至寫了一個產生各種亂數模型的程式,然後用眼睛一一把每個數字看過一遍,分析影像時也一樣,每張影像他都一一檢視過,「什麼時候要把資料分開或結合看,這都需要經驗。」彭智楹說。

但在工具之外,張嘉祜認為最重要的還是商業嗅覺,現在很多人隨隨便便就說自己會做數據分析會用什麼資訊工具,但沒有商業眼光依然白搭。

特質五:跨界合作能力

最後,由於大數據科學家必須膽大心細又要天馬行空,邏輯好之外還得要融合自身生活經驗,這些特質要在一個人身上面面俱到非常困難。張嘉祜指出,跨界合作能力在這裡就顯得格外重要,因為不同的產業別需要不同的觀點,如果不懂得傾聽別人的意見,恐怕陷入盲點而不自知,跨界合作有助於發現不同面向切入分析,更有效率地做決策。

和沛科技創辦人翟本喬曾說:「在大數據領域的英雄不是圖靈,也不是克勞德·夏農(發明資訊概論的人),而是福爾摩斯,這種有點自閉但能夠看出事情關鍵的人,如果只是因為大數據很紅就去學這些工具,你學這些工具就是賺22K的,把專業領域做好,你可以賺2200K。」因此,與其盲目追隨大數據熱潮,不如看看自己是否具備這些特質以及專業,再來決定要不要加入大數據淘金潮。

文章轉載自:數位時代

影片引用自:11TV
大數據科學家,所必備的五項技能
職務類別:資料庫管理人員   職稱:大數據科學家   相關職缺:資料儲存/媒體製造相關  資料庫管理人員
大數據科學家有多夯?讓我們從有史以來市值最高的科技公司蘋果看起。為搶大數據科學家,蘋果開出美金16萬到20萬(約合台幣400萬到600萬)的年薪,以及任何你想得到的好康福利:美味員工餐、健身中心、教育津貼甚至凍卵補助,但蘋果不是唯一一個需要數據科學家的公司,打開領英(LinkedIn),上頭至少有5萬3千個數據科學家的職缺,而這還只是美國的統計數字。

大數據行動廣告平台威朋是一家藉由分析行動裝置的數據,為客戶找到精準行銷目標的數據管理平台(DMP)與即時廣告競價(RTB)投放公司,業務橫跨台、日、中、港等地,數據分析為其業務核心,數據分析部門佔其人員大宗,威朋數據科學研發經理彭智楹與張嘉祜分別擁有多年數據分析經驗,現身說法分享數據科學家到底在做什麼以及如何成為數據科學家。

特質一:定義和釐清問題

談及好的數據科學家具備什麼條件,彭智楹認為可以分成兩種等級:一種是是別人幫你把問題定義好,然後你來解開,但更厲害的是你知道怎麼找問題,什麼問題才是重要的,自己發現問題。「你要定義最有前瞻性最重要的問題,結果不只正確還要顯著性,對各領域發展有貢獻,要有商業價值和技術進步的空間,兩者能兼備是最好的。」彭智楹說。張嘉祜也認為在分析數據時,定義問題的能力很重要,因為問題分成很多層面,數據科學家必須要看當下要解決什麼問題,再用那個指標去回答。因此數據科學家首要具備的條件就是:定義和釐清問題

特質二:想像力

不要以為數據科學家整天在電腦前面工作,只要一板一眼地分析數據就好,其實想像力也很重要。張嘉祜根據自己的工作經驗指出,有一定的創意才能幫助自己找到不一樣的觀點,學校會訓練你使用習慣的工具,但你應該要嘗試各種可能,如果沒有專業知識判斷,最後得到的結果就會跟大家差不多。

例如在威朋工作常會需要幫助客戶找到具有某種特徵的族群,這個時候若只靠經驗和專業是不夠的,還需要發揮一些想像力。「我們在描述一個人的行為傾向時是很多維度的東西去做整合,除了你對生活經驗的豐富度之外,你還要有創意去描述這種人具有什麼樣的行為特徵,我們再透過機器學習的輔助,幫助你快速收斂這些特徵背後隱含的意義是什麼,不然一般人就是我想到什麼樣的資訊我就勾一勾,這樣不夠。」張嘉祜說。

特質三:邏輯思考能力

數據科學家的工作時常需要建立假設然後去驗證它,並且建立模型,這個過程仰賴優秀的邏輯思考能力,否則追尋答案到一半可能不小心就會走到岔路。大學時期雙修物理和心理學的彭智楹認為,心理系的訓練幫助他可以更容易了解他人的動機和想法,也因此在分析數據時常有意想不到的收穫。

以數據科學家最討厭的機器人為例,這類的假數據抓不勝抓,又會影響到統計結果,令人不堪其擾,但彭智楹認為與其去思考機器人在哪裡,要怎麼抓,不如反向思考什麼樣的網頁需要機器人,機器人的數據從哪裡來,就像是偵探福爾摩斯一樣,「偵探怎麼找出犯人,他不是從犯案手法去看的,而是從動機。」

特質四:基礎數理與資訊工程能力

雖然彭智楹和張嘉祜都同意數據科學家不一定非得要是理工學院或電資學院出身的,但也都異口同聲地指出數據科學家還是必須具備基礎數理與資訊工程能力。

張嘉祜說,你也許可以用Excel去處理數據,但如果想要加快資料處理速度的話,程式能力依然是必須的。彭智楹認為不能害怕數字很重要,必須要培養對數字的敏銳度,例如他在念博士時就會用眼睛觀察數列是否有周期性的變化,從中訓練自己對數字的敏銳度,他甚至寫了一個產生各種亂數模型的程式,然後用眼睛一一把每個數字看過一遍,分析影像時也一樣,每張影像他都一一檢視過,「什麼時候要把資料分開或結合看,這都需要經驗。」彭智楹說。

但在工具之外,張嘉祜認為最重要的還是商業嗅覺,現在很多人隨隨便便就說自己會做數據分析會用什麼資訊工具,但沒有商業眼光依然白搭。

特質五:跨界合作能力

最後,由於大數據科學家必須膽大心細又要天馬行空,邏輯好之外還得要融合自身生活經驗,這些特質要在一個人身上面面俱到非常困難。張嘉祜指出,跨界合作能力在這裡就顯得格外重要,因為不同的產業別需要不同的觀點,如果不懂得傾聽別人的意見,恐怕陷入盲點而不自知,跨界合作有助於發現不同面向切入分析,更有效率地做決策。

和沛科技創辦人翟本喬曾說:「在大數據領域的英雄不是圖靈,也不是克勞德·夏農(發明資訊概論的人),而是福爾摩斯,這種有點自閉但能夠看出事情關鍵的人,如果只是因為大數據很紅就去學這些工具,你學這些工具就是賺22K的,把專業領域做好,你可以賺2200K。」因此,與其盲目追隨大數據熱潮,不如看看自己是否具備這些特質以及專業,再來決定要不要加入大數據淘金潮。

文章轉載自:數位時代

影片引用自:11TV
相關甘苦談連結